Energy migration processes in undoped and Ce-doped multicomponent garnets single crystal scintillators

¹K. Bartosiewicz, ¹V. Babin, ²K. Kamada, ^{2,3}A. Yoshikawa, ¹M. Nikl
¹Institute of Physics AS CR, Cukrovarnicka 10, Prague, 16253, Czech Republic
²NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
³Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577, Japan

2. Results and discussion

- 1) $Gd_{x}Y_{3-x}Ga_{x}AI_{5-x}O_{12}$ (x=1,2,3)
- 2) Gd₃Ga₃Al₂O₁₂:Ce³⁺
- 3. Conclusions

Outline

1. Experiments

2. Results and discussion

- 1) $Gd_xY_{3-x}Ga_xAI_{5-x}O_{12}$ (x=1,2,3)
- 2) Gd₃Ga₃Al₂O₁₂:Ce³⁺

Chemical formula	temperature interval for decay time measurements	temperature interval for PL emission measurements
Gd ₁ Y ₂ Ga ₁ Al ₄ O ₁₂	8-500 K	8-300 K
Gd ₂ Y ₁ Ga ₁ Al ₄ O ₁₂	8-500 K	8-300 K
Gd ₂ Y ₁ Ga ₃ Al ₂ O ₁₂	8-500 K	8-300 K
Gd ₁ Y ₂ Ga ₃ Al ₂ O ₁₂	8-500 K	8-300 K
Gd ₃ Ga ₁ Al ₄ O ₁₂	8-500 K	8-300 K
Gd ₃ Ga ₃ Al ₂ O ₁₂	8-70 K	8-60 K
Gd ₃ Ga ₃ Al ₂ O ₁₂ :Ce 0.1%	8-70 K	8-300 K

Condition of the measurements for undoped and Ce³⁺- doped samples

2. Results and discussion

- 1) $Gd_{x}Y_{3-x}Ga_{x}AI_{5-x}O_{12}$ (x=1,2,3)
- 2) Gd₃Ga₃Al₂O₁₂:Ce³⁺

Absorption spectrum of $Gd_2Y_1Ga_1Al_4O_{12}$. Intense Gd^{3+} -related peak at 270 nm as well as host lattice absorption region ($\lambda \le 220$ nm) are evident.

PL excitation (λ_{em} = 313 nm) and PL emission (λ_{ex} = 275 nm) spectra of Gd₂Y₁Ga₁Al₄O₁₂. Observed peak with maximum around 314 nm is typical for ⁶P_J – ⁸S_{7/2} emission in Gd³⁺ ions.

Temperature dependence of decay time (a) and PL intensity (b) in the $Gd_1Y_2Ga_1AI_4O_{12}$ and $Gd_2Y_1Ga_1AI_4O_{12}$ Intensities and decay times of Gd^{3+} emission decrease with increasing Gd^{3+} content – concentration quenching.

2. Results and discussion

1) $Gd_xY_{3-x}Ga_xAl_{5-x}O_{12}$ (x=1,2,3)

2) Gd₃Ga₃Al₂O₁₂:Ce³⁺

PLE and PL spectra of $Gd_3Ga_3Al_2O_{12}$:Ce³⁺.The emission of Ce³⁺ is observed upon excitation at ⁸S – ⁶I_J absorption band of Gd³⁺. (ET from Gd³⁺ to Ce³⁺ ions).

PLE spectrum monitored at maximum of Ce^{3+} emission. Presence of weak line at 270 nm (Gd³⁺ – related) confirm the energy transfer from Gd³⁺ to Ce³⁺.

Temperature dependence of 4f – 4f PL decays of Gd³⁺ in undoped and Ce³⁺ – doped Gd₃Ga₃Al₂O₁₂ (λ_{ex} = 270 nm, λ_{em} = 315 nm). For the Ce – doped sample, the decay time shortened much rapidly , becoming at 60 K as much as 190 times shorter than that in the undoped sample.

Temperature dependence of Gd and Ce – related emission bands in $Gd_3Ga_3Al_2O_{12}$:Ce upon excitation at ${}^8S - {}^6I_J$ absorption band of Gd³⁺. Emission intensities redistribution of Gd- and Ce-related bands is evident in the range 25-70 K

2. Results and discussion

- 1) $Gd_xY_{3-x}Ga_xAl_{5-x}O_{12}$ (x=1,2,3)
- 2) Gd₃Ga₃Al₂O₁₂:Ce³⁺

All investigated samples shown energy migration in Gd³⁺ sublattice.

In undoped samples concentration quenching in Gd³⁺ sublattice was observed.

The temperature dependence of carried out measurements shown phonon assistance in energy migration

Nonradiative energy transfer from Gd^{3+} to Ce^{3+} in the Ce-doped $Gd_3Ga_3Al_2O_{12}$ was proved .

Gd₃Ga₃Al₂O₁₂ (GGAG) bulk crystal

14

Crystals grown by Czochralski method in IP Prague laboratory (seeds from C&A Japan)

In Tb³⁺ grown crystal the emission spectrum shows full set of emission lines starting from ${}^{5}D_{3}$ and ${}^{5}D_{4}$ levels of Tb³⁺. PLE spectrum shows 4f-5d transition of Tb³⁺ below 280 nm, fingerprint of Gd³⁺ absorption lines at 305-210 nm, the broad band around 450 nm might be due to Ce³⁺ contamination. Decay time of 544 nm line is 3.3 ms, consistent with strongly forbidden character of Tb³⁺ 4f-4f transitions

For financial support from

Marie Curie Initial Training Network LUMINET, grant agreement no. 316906.

and to you for your attention!

